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Abstract 

A basic obstacle to the widespread  use of  two-phase  
seminvariants  of  first rank in direct methods is often 
the large amoun t  of  comput ing  time needed for their 
probabilistic estimation. A new very fast algori thm 
for identifying such seminvariants  and a modified 
probabilistic formula  for their estimation are de- 
scribed. Cont ra ry  to common belief, practical tests 
show that the amount  of  information contained in 
two-phase seminvariants  is in general not negligible 
compared  with informat ion provided by triplets. 

Symbols 

N:  number  of  atoms in the cell. 
m: number  of  symmetry  operators  of  the space group. 
Cs = (Rs, Ts): sth symmetry  operator:  Rs is its rota- 
tional and Ts its t ranslat ional  part. 
Eh : normal ized structure factor with vectorial index h. 
R~ = levi. 
~Oh: phase of  Eh. 
I: identity 3 × 3 matrix. 

I. Introduction 

A first a t tempt  at evaluating two-phase seminvariants  
was described by Grant ,  Howells & Rogers (1957). 
The method (the so-called 'coincidence method ' )  was 
extended to non-centrosymmetr ic  space groups by 
Debae rdemaeke r  & Woolfson (1972), according to 
the following argument .  Let 

Ul = hi - h2Rt~, ( l a )  

u2 = h2-hjR,~.  ( l b )  

If  IEu,I, Ie,,2l, IEh,I, IEh21 are all sufficiently large then 

so that 

~u! ~ ~h! -- ~h2R B, 

~)u2 ~ (~h 2 -- ~hiR,~ , 

qo2 = ~o,, + q~u2 -~ 27r(hiT,~ + h2T~). (2) 

qb2 is a structure seminvariant  and may therefore be 
estimated by means of  (2). 

0108-7673/89/010099-06503.00 © 1989 International Union of Crystallography 
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The main limit of the above approach is that it 
cannot provide information on q~2 in contradiction 
with that provided by triplet invariants. For example, 
in symmorphic space groups the estimate q)2-~ 7r is 
not allowed. Such a result is on the contrary possible 
if the method of joint probability distribution func- 
tions is applied (Giacovazzo 1977a, b; from now 
on referred to as papers I and II respectively): in 
particular q)2 was estimated via the conditional 
probability 

P( a~2l IEh,[, IEh~I, [E.,I, I E,,21). 
Independently Green & Hauptman (1976, 

1978a, b) and Hauptman & Green (1978), using the 
neighbourhood concept, derived conditional prob- 
ability distributions for two-phase seminvariants in 
space groups P1 and P2~. The approach was able to 
exploit larger sets of diffraction magnitudes than 
before. 

A more general point of view was introduced by 
Giacovazzo (1978), Giacovazzo (1979) (from now on 
referred to as paper I I I) and Giacovazzo, Spagna, 
Vickovi6 & Viterbo (1979) (from now on referred to 
as paper IV) who applied the representation method 
for ranking diffraction magnitudes in order of 
expected effectiveness (in the statistical sense) for the 
estimation of q)2. The algebraic results may be sum- 
marized as follows: 

(a) q)2 = ~Ou,+ cp,~ is a two-phase structure semin- 
variant of the first rank if at least two vectors h~ and 
h2 and two rotation matrices R~ and R~3 exist such 
that (1) are satisfied. 

(b) Solutions h~ and h2 of the system (1), for given 
Ul, u2, R~, Rt3, may be found by first replacing the 
system (1) by 

h t ( l  - R,,Rt3) = u~ + u 2 R , ,  ( 3 a )  

h 2 ( l -  Rt3R~) = u lR~  + u2, (3b)  

and then solving (3). 
In order explicitly to obtain h~ and h2 the general- 

ized inverses (say * A~.t3 and A~.,,) of 

A,,,~ = ( I - R , , R t 3 )  An,,, = ( I - R t 3 R ~ )  

respectively have to be calculated, so that 

hi (ua + u2Rt3)A*,t3 + Z(l * = - A,~,t3A ~,t3), (4a) 

h2=(u,R,~+u2)A~3,,,+Z(I-At3,~A~.~). (4b) 

Z is a free vector with integer components: con- 
sequently h~ and h2 represent in general sets of vectors 
(say {h~} and {h2} respectively) rather than single 
vectors. Equations (4a) and (4b) have useful integer 
solutions if systems 

(ul + u2Rt3)A*.t3 - 0 (mod 1), 

(u,R~ +u2 )A~ . , -  0 (mod 1) 
(5) 

are satisfied respectively. 

(c) When {hi} and {h2} are obtained, the special 
quartets 

q~u, + ~0u:R~ -- q~h, + q~h, R,, R~, (6a) 

~0UlR ~ -~- ~Du 2 -- Ch- -~- Ch2R~R,, (6b) 

can be constructed. The quartet '(6a) depends on the 
cross magnitudes with indices 

ul + u2R~ - h~(I - R ~ R ~ ) ,  

ul - h i  - - h 2 R ~ ,  

u2R~ - h i  - -h~(I + R,~R~) + h2R~ ; 

likewise the quartet (6b) depends on the cross magni- 
tudes with indices 

uiR~ + u2---- h2( l -  Rt3R~), 

ulR~ - h2 -- h lR~  - h2(I + Rt3 R,~ ), 

u2-h2--- -h iRe .  

Each quartet (6) differs from t/92 by a constant arising 
because of translational symmetry. 

(d) Some of the magnitudes on which quartets 
(6a) depend influence also the estimates of the quar- 
tets (6b). Thus the probabilistic estimation of ~2 via 
the first representation is obtained by calculating the 
conditional distribution 

P(O~2I I Eu, l, IE.,I, {1~,1}, {IEh=I}, IF-~,c.-RoRe,I, 

I Eh2(,-R~Ro >1, {1E-h,(,+Ro R~ ~+h,R,I}, 

{[ EhiRo -h2(l+ RO R~ )l} )" (7) 

If more pairs (R~, R, )  satisfy (1) then (7) may be 
easily generalized. The above procedure is quite gen- 
eral and may be applied to any space group: however 
the only program so far available [the SIR program 
(Cascarano et al., 1985)] works only up to the ortho- 
rhombic system (see paper IV). In addition the pro- 
cedure is rather time consuming: indeed for each pair 
of reflexions (ul, u2) chosen among the NRIF (say 
NRIF < - 500) largest reflexions, all possible pairs of 
matrices (R~, R~) have to be introduced in (7) in 
order to check if integer solutions {hi} and {h2} are 
allowed. Even if the procedure may be sped up by 
storingall m ( m -  1) generalized inverses A,~,t3,* solving 
(4) and checking (5) up to 

N R I F ( N R I F -  1 ) m ( m -  1)/4 

times may be a big job even for fast computers, 
particularly for high-symmetry space groups (inci- 
dentally, just those space groups provide the largest 
information on structure seminvariants). The comput- 
ing time is almost doubled in non-centrosymmetric 
space groups because we have to check which of 
q~u,+q~u, and/or  ~ . , - ~ . ,  are seminvariants of first 
rank. 

In order to reduce computing time, NRIF may be 
reduced (in the SIR program NRIF<_ 50), but not 
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too much because two-phase seminvariants are phase 
relationships of order 1/N so that only a small per- 
centage of them can be reliably estimated. The low 
average reliability level of the probabilistic estimates 
is also due to the fact that quartets (6) are of special 
type, and they are on average less reliable than general 
quartets. On the other hand the use of two-phase 
seminvariants in direct procedures is encouraged 
because several related special quartets are often 
available to estimate single two-phase seminvariants, 
particularly in high-symmetry space groups. 

It may be concluded that the most important 
obstacle to the wider use of two-phase seminvariants 
in direct procedures is their computing cost. To over- 
come this drawback a new algorithm is described in 
§ 2 and in Appendix A (deposited) which drastically 
reduces computing time. The probabilistic back- 
ground and the conclusive formulae estimating 
seminvariants are described in § 3. Some practical 
applications are described in § 4. 

2. A fast algorithm for finding two-phase structure 
seminvariants of  the first rank 

A new algorithm singling out two-phase 
seminvariants of first rank is here described and has 
been implemented into the new release of the SIR 
program. 

Usually the first phase relationships estimated by 
SIR are the one-phase structure seminvariants of first 
rank ~0H. They are characterized by the following 
property: at least one rotation matrix R, and one 
vector h~ may be found such that 

H = h l ( l - R . ) .  (8) 

Once reflexions H have been identified by the pro- 
gram (say the SEM1 subroutine) the pairs (R,,  {h~}) 
which satisfy (8) are stored for every H. This informa- 
tion, which is essential for the estimation of ~0H via 
its first and /o r  second representation (Cascarano, 
Giacovazzo, Calabrese, Burla, Nunzi, Polidori & 
Viterbo, 1984), is later supplied by SEM1 to the 
program which estimates two-phase structure 
seminvariants of first rank (say SEM2). 

SEM2 works according to the following steps. A 
~2 list is calculated relative only to triplets containing 
one-phase structure seminvariants of first rank. A 
typical row of the list looks like 

n~, +nj - nk, A3 ; -ns + n,, A 3 ; . . . (9) 

where n~ is the code number of H, (nj, nk), 
(n~, n , ) , . . . ,  are code numbers of usually general 
reflexions, and A3 is the phase shift of the triplet. 

Let us rewrite the generical triplet in (8) in terms 
of indices: 

H=h~(I-R,~)=slua,Rp+s2ua~Rq (10) 

where (u~,,uo~) are the standard indices of the 

reflexions ( n 2 ,  n 3 ) ,  lp, Rq are the known rotation 
matrices involved in the triplet and s~, s2 are the signs 
for which ua, and ua2 satisfy (10); then 

A 3 : --27r(slu,,,Tp + S2Ua2Tq). 

It is immediately seen that (10) plays the same role 
as (3a)" therefore our reduced )-'.2 list directly provides 
all pairs (ul, u2) which form two-phase seminvariants 
of first rank. In addition it may be noted that starting 
from (3a) we were obliged [via (4) and (5)] to seek 
the integer solutions {hi} for all pairs (R,,, Re). On 
using (10) SEM2 directly receives from SEM1 the 
pairs (R,,{h~}) to be used for constructing the 
quartets 

l~-) 4 = Sl ~OUalRp'q- S2~ua2Rq-- ~Dhl'~- ~hlR n (11) 

which coincide with quartets (6a): by comparison it 
may be assumed that 

SlU~,Rp = ul = hi - h2R e, (12a) 

S2Ua2Rq = u2R e = ( h  2 - hiRe)Re, (12b) 

R, =R, ,R e. (12c) 

It apparently seems that in order to obtain indices of 
the reflexions involved in (6b) we have to solve the 
system of equations (12) with respect to R~, R e and 
h2 [ u a t l p  and Ua2Rq a r e  provided by the ~2 list and 
the pair (hz, R,)  is supplied from SEM1]. Solving 
(12) for every pair (ua,Rp, uo2Rq) and for every h is 
a very time-consuming job. However that may be 
avoided too, provided we do not determine R,~, R e 
and h2 explicitly, but seek only the product h E R  e .  

Indeed, if the indices in (6b) are multiplied by Re, 
after application of (12) the quartet (6b) becomes 

SI ~)(uaIRp)RaR fl + S2~Pua2Rq -- ~[~h2R/3 "-I- ~Dh2RflRaRfl , 

which may be rewritten as 

(~ t  4 : S I ~ ( u a l R p ) R "  -'}- S 2 ~ u a 2 R  q - -  (~h2R/3 -[- ( ,Ph2R~R" • (13) 

Since -h2R e is just the second cross of the quartet 
(6a) the indices of (13) instantaneously follow from 
(11). 

We now quote some additional characteristics of 
the algorithm which further speeds up the procedure: 

(a) According to (11) q04 reduces to 

(I)4 = 1/t2 - -  27r(slu,,,Tp + s2uo~Tq) - 27rhlTn 

= a/t2 + A3 - -  2 7 r h l T n ,  

where 

O2 = sly.o, + s2~.o2 (14) 

is the quantity to be estimated, and A 3 is given by the 
~2 list. Likewise @~ is equal to 

c19'4= aF2+ A3-27rslua,RpTn- 27rh2ReT,,. (15) 

Since, according to (12a), SlUaR p = h~-h2Re, then 
! __ ( / )4  - -  1/t2 -~t- A 3  - 2 7 r h l T , ,  = ~ 4 .  
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Table 1. Structure codes, space groups, chemical data and some numerical results (see text) are shown for 23 
test structures 

In order to save space references are not given. For most of them the reader is referred to magnetic tapes distributed by crystallographic 
groups in York, England and G6ttingen, Federal Republic of Germany. 

Number of 
non-H atoms 

Code Space group Formula in the cell NRIF NTRIP n.s.s. (n.o.p.) 
INOS P2Jn C6HI206.H20 104 304 3508 >8000 234 
ERGO P212t21 C28H,uO 232 382 > 8000 7964 181 
RIFOLO P21 C39H49NO13 106 362 2890 2223 333 
GRA4 P1 C3oH22 N204 72 394 5618 7494 >400 
QUI NO R.3 C602 432 296 5877 > 8000 >400 
D1OLE I42d CtoH 1802 192 182 6428 > 8000 42 
APAPA P41212 C3oH35N 15016P2 504 426 > 8000 > 8000 66 
PROLI NA P2t C26H4oN,~Ov 74 298 1741 889 190 
CEPHAL C2 C18H21 NO3 176 326 3572 4354 106 
NEWQB P1 C24HzoN2Os 124 473 5073 7139 79 
TPH C222t C24N2H2o 312 306 3946 7994 335 
BED 14 C26H26N40 4 272 286 4254 > 8000 369 
MGH EX P31 C48H68N 12012- 285 489 > 8000 3392 104 

Mg(CIO4)2(CH3CN)4 
G O L D M A N  Cc C28H 16 224 374 4730 65 18 
MUNICH 1 C2 C2oH16 i 60 310 3708 5296 173 
DIAM P42/n C 14H2oO 120 260 6472 > 8000 >400 
TURI 0 P6322 Ct 5H2402 204 218 > 8000 > 8000 256 
TPALA P2t C28H42N407 78 306 3571 1255 209 
BOBBY P2~3 CaNaN(CH2CO2)3 60 68 2062 5508 >400 
NO55 Fdd2 C2oH24N 4 384 246 4538 > 8000 100 
LOGANIN P212121 C17H2601o 68 258 2916 2619 252 
SELEN1 D P2t C22H2802Se 50 254 4736 689 226 
LITHO P212121 C24H4o0~ 108 258 4297 3922 209 

Thus both the quartets ~ and ~4 are referred to qt2 
by the same phase shift. 

(b) The first cross term of all the quartets (11) 
relative to the various seminvariants (+nj , -nk) ,  
( - n s , + n , ) , . . .  in (9) coincides constantly with n, 
whose [El is supplied by the Y~2 list. 

(c) No search of signs s~ and s2 which make s~ou,+ 
s2¢,,2 a seminvariant is needed: indeed they are 
directly supplied by the special Y-2 list. 

It may be concluded that, once one-phase structure 
seminvariants of first rank have been identified (that 
is a very fast job), singling out two-phase 
seminvariants by means of the algorithm described 
above requires almost the same computing time as a 
usual ~2 list. That allows us to employ, for searching 
seminvariant pairs Eu, and E..,, the same subset of 
NRIF reflexions commonly used for the Y~2 list (while 
H varies over all the subset of the one-phase 
seminvariants). In Table 1 we show, for 19 crystal 
structures of different complexity and covering a 
variety of space groups, the NRIF values, the triplet 
invariants (NTRIP) found among the NRIF 
reflexions, and the number of two-phase 
seminvariants of first rank (n.s.s.) found by the 
procedure. 

3. The probabilistic estimation of xP2 

Every 92 found by the previous procedure may be 
estimated via its first representation according to 

probabilistic formulas described in papers I I I and IV 
of this series. Their different algebraic forms are a 
consequence of the various approximations intro- 
duced into the probabilistic approaches and of the 
particular algorithms chosen for the computation. In 
the present paper a further modification of the 
original formulas is used. 

For centrosymmetric space groups the evaluation 
of the sign of cos 92 is performed by means of a sign 
probability distribution of type 

/9+ -~ 0"5 + 0.5 tanh (a2/2); (16a) 

for non-centrosymmetric space groups the distribu- 
tion of 92 is given by the von Mises distribution 

P(qr2)'[2~'Io(a2)]-'  exp[a2cos(qt2-02)] .  (16b) 

a2 and 02 are parameters which can be calculated 
from the contributions Q arising from the various 
pairs of quartets (11) and (13) obtained when h l varies 
into {h~} and Rn into the set of matrices satisfying (8). 

For abbreviation let us define 

= I E I  2 - 1 ,  , , 
a i a 

E3,1 ~ Eh l  ~ E l 2 , 1  ~ E.SlUalRp+s2ua2Rq ~ E23,1 ~ Es2un2Rq_hl  , 

E3,  2 ~ E h 2 R t  3 , E 1 2 , 2  ~ E(Slua lRp)Rn+s2Ua2R q , 

E13 ,2  ~ E ( S t U a t R v ) R n _ h 2 R t  3 • 

Then 

Q = ( a + b )  (17) 
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Table 2. QUINOL: the numbers of triplet (n = 3) and 
of two-phase seminvariants (n = 2) relationships having 
reliability parameters larger than fixed ARG values are 
given (in parentheses are the number of wrong relation- 

ships) 

A R G  n = 3  n = 2  

0.4 5816 (932) 400(22) 
0"8 2847(285) 317(10) 
1"2 1216(69) 181(3) 
1.6 529 (16) 112(1) 
2.4 130 (1) 57 (0) 
3.2 37(0) 36(0) 
5.0 2(0) 14(0) 

where 

a : B3,1 + B3,2, 

b = e3A el2,1 + e3,2e12,2 -I- 2e3,1 e3,2 -t- 2e3,  l e23,1 -F 2e3,2e13,2.  

In order to take into account the contributions of 
the various pairs of quartets the parameters % and 
02 have to be calculated: 

0~2 = (IE, E2]/N) 

tan O2=(~ Q j s i n z ~ j ) / ( ~  QjcosAj) (19) 

where 

Aj = (--A3 + 2,n-hlTn). 

Seminvariants with restricted phase values can be 
estimated by slightly modifying (16) and (18). Let 
(02,, 02,+ 7r) be the allowed phase values and %,  = 
az cos (02 - Ozr). If 32~ >- 0 then g% = 02~ with reliabil- 
ity parameter 32, ; if 32~ < 0 then a/% = 02, + 7r with 
reliability parameter [O~2r 1. 

Equations (16) may be easily compared with corre- 
sponding distributions given in papers III and IV. In 
particular Q, as defined by (IV.43), almost reduces 
to our Q term [as in (17)] if C = 0. Such an assumption 
is not theoretically justified; however, our experi- 
mental tests clearly showed that [C[ in (IV.43) was 
too large when [a + b] was large, so that reliable phase 
indications were often weakened because of I/arge 
denominators ( l + C ) .  We have thus preferred to 
assume C = 0 always and empirically rescale 32 pa- 
rameters on triplet reliability parameters. In the last 
column of Table 1 for each structure the number 
(n.o.p.) of two-phase seminvariants with 32 larger 
than 0.4 is given (only a maximum of 400 
seminvariants is stored by SIR). 

To be successful the above procedure requires some 
special care in order to avoid the repeated use in (18) 
and (19) of the same information. A typical situation 
occurs when some of the cross terms of the pair of 

Table 3. Number of correct solutions and number of 
trials are given for the 23 crystal structures quoted in 

Table 1, according to conditions defined in the text 

Different number s  of  trials for  the same structure may  be ob ta ined  
when the CONVERGENCE procedure  chooses  different s tart ing 
sets accord ing  to the different pr ior  in format ion  relative to 
P R O T  1 and  P R O T  2. 

P R O T  1 P R O T  2 

INOS 4 (32) 10 (32) 
ERGO - -  (30) - -  (36) 
RIFOLO 13 (30) 24 (30) 
GRA4 8 (32) 8 (32) 
QUINO 5 (32) 14 (32) 
DIOLE - -  (36) 4 (30) 
APAPA 1 (72) 2 (72) 
PROLINA - -  (24) 7 (24) 
CEPHAL - -  (24) 1 (24) 
NEWQB 1 (32) 1 (32) 
TPH - -  (56) - -  (36) 
BED 7 (36) 10 (36) 
MGHEX - -  (48) - -  (48) 
GOLDMAN 1 (24) 1 (24) 
MUNICH1 - -  (24) - -  (24) 
DIAM 4 (32) 20 (32) 
TUR10 12 (56) 8 (32) 
TPALA - -  (24) 1 (24) 
BOBBY 28 (72) 72 (72) 
NO55 8 (56) 13 (56) 
LOGANIN 2 (24) 8 (36) 
SELENID 10 (24) 8 (24) 
LITHO 1 (30) 8 (30) 

quartets (11) and (13) coincide because of special 
algebraic conditions among ua,, ua 2, h~, h E" in such 
cases (17)-(19) do not hold. In accordance with 
Appendix A* such special quartets are readily recog- 
nized by some algebraic tests and probabilistic for- 
mulas are suitably modified. 

Table 2 is a typical example of how triplet and 
seminvariant relationships may be ranked according 
to G=2]E1E2E3]/N 1/2 and to ~2 parameters. The 
table clearly suggests that information provided by 
two-phase seminvariants is not negligible with respect 
to that contained in triplet relationships. 

4. Experimental results and conclusions 

The 23 crystal structures quoted in Table 1 have been 
processed by SIR according to the following default 
conditions: (a) five starting set phases are represented 
by magic integers (Main, 1978); (b) triplet invariants 
are estimated via the P~o formula (Cascarano, 
Giacovazzo, Camalli, Spagna, Burla, Nunzi & 
Polidori, 1984). 

For each structure the number of correct solutions 
and the number of trials (in parentheses) are shown 
in Table 3 (column PROT 1). No solution is found 
in these conditions for eight structures. 

* A p p e n d i x  A has been  depos i ted  with the British Library Docu-  
ment  Supply  Cent re  as Supp lemen ta ry  Publicat ion No.  SUP 51178 
(3pp.).  Copies  m a y  be ob ta ined  through The Execut ive Secretary,  
In ternat ional  Union  o f  Crys ta l lography ,  5 Abbey  Square,  Ches te r  
CH1 2HU,  England.  
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The same 23 structures were later processed by 
SIR using one-phase (according to Cascarano, 
Giacovazzo, Calabrese, Burla, Nunzi, Polidori & 
Viterbo, 1984) and two-phase seminvariants in addi- 
tion to conditions (a) and (b). In Table 3 for each 
structure the number of correct solutions is given 
(column PROT 2) together with the number of trials 
(in parentheses). 

Only four structures remain unsolved by SIR 
[however, it cannot be concluded that SIR is unable 
to solve those structures using non-default conditions; 
see for example, Burla, Giacovazzo & Polidori 
(1987)]. Very often the ratio (number of correct solu- 
tions/number of trials) is larger in PROT 2 than in 
PROT 1. Thus Table 3 provides clear evidence of how 
relevant phase seminvariants may be for the success 
of direct phasing procedures. 

Two further observations can be made. 
(1) The search of seminvariant pairs is made 

among the largest NRIF reflections commonly used 
for the ~2 list, while H varies over the complete subset 
of one-phase seminvariants. Limiting the cross term 
H to the strongest reflexions reduces both the comput- 
ing time of the procedure and (dramatically) the 
number of available two-phase seminvariants. A large 
subset of reliable two-phase seminvariants can be 
more easily found when H is unrestricted. 

(2) The factor SC used to rescale ~2 on the triplet 
reliability parameter a3 (a3 = 21EhEkEh+kl/N ~/2) was 
empirically chosen so as to satisfy 

0"6 x SC xY. a3=Y, a2, 

where the summations are over the most reliable 400 

triplets and two-phase seminvariants respectively. 
The scaling scheme is unsatisfactory from the theo- 
retical point of view, even if it works quite well 
in practice for all our test structures. It is hoped 
that future probability distributions will make 
available more efficient formulas "for estimating 
seminvariants. 

References 
BURLA, M. C., GIACOVAZZO, C. & POLIDORI, G. (1987). Acta 

Cryst. A43, 797-802. 
CASCARANO, G., GIACOVAZZO, C., BURLA, M. C., NUNZI, A., 

POLIDORI, G., CAMALLI, M., SPAGNA, R. & VITERBO, D. 
(1985). IX Eur. Crystallogr. Meet., Torino. Abstract 1-046. 

CASCARANO, G., GIACOVAZZO, C., CALABRESE, G., BURLA, M. 
C., NUNZ1, A., POLIDORI, G. & VITERBO, D. (1984). Z Kristal- 
Iogr. 167, 37-47. 

CASCARANO, G., GIACOVAZZO, C., CALABRESE, G., BURLA, 
M. C., NUNZl, A., POLIDORI, G. & VITERBO, D. (1984). Z. 
Kristallogr. 167, 37-47. 

DEBAERDEMAEKER, T. & WOOLFSON, M. M. (1972). Acta Crvst. 
A28, 477-481. 

GIACOVAZZO, C. (1977a). Acta Cryst. A33, 531-538. 
G1ACOVAZZO, C. (1977b). Acta Co'st. A33, 539-547. 
GIACOVAZZO, C. (1978). Acta Cryst. A34, 27-30. 
GIACOVAZZO, C. (1979). Acta Crvst. A35, 296-305. 
GIACOVAZZO, C., SPAGNA, R., VICKOVI(', I. & VITERBO, D. 

(1979). Acta Cryst. A35, 401-412. 
GRANT, l")., ]"~('~WFI I ~, R. t~ RC)GF:RS, D. (1957). Acta Crvxt. 10, 

489-497. 
GREEN, E. A. & HAUPTMAN, H. (1976). Acta Co'st. A32, 940-944. 
GREEN, E. A. & HAUPTMAN, H. (1978a). Acta Crvst. A34, 216- 

223. 
GREEN, E. A. & HAUPTMAN, H. (1978b). Acta Cryst. A34, 230- 

241. 
HAUPTMAN, H. & GREEN, E. A. (1978). Acta Co'st. A34, 224-229. 
MAIN, P. (1978). Acta Crvst. A34, 31-38. 

Acta Cryst. (1989). A45, 104-109 

Phase Dependence of  Kikuchi Patterns. I. Theory 

BY D. M. BIRD AND A. G. WRIGHT 

School of  Physics, University o f  Bath, Bath BA2 7 A Y, England 

(Received 6 May 1988; accepted 22 July 1988) 

Abstract 

Thermal diffuse scattering in high-energy electron 
diffraction is analysed using the Einstein model of 
lattice vibrations. An expression for the intensity dis- 
tribution in the Kikuchi pattern is obtained which 
includes thickness-dependent terms (i.e. a dependent- 
Bloch-wave theory is used) and the effects of a general 
crystal structure. The corresponding two-beam limit 
is shown to consist of four distinct terms, two of 
which depend on the phase of the structure factor. 
One of these is found to be non-zero only for non- 
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centrosymmetric crystals and for relatively thin crys- 
tals. It leads to an asymmetric Kikuchi band, even in 
a symmetrical scattering geometry. This asymmetry 
may be used to determine the polarity of non- 
centrosymmetric crystals. 

1. Introduction 

The theory of thermal diffuse scattering in high- 
energy electron diffraction and the associated process 
of Kikuchi pattern formation have been extensively 
studied over the last thirty years. Many of the earlier 
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